Closing Wed: HW_8A, 8B
(8.1) Midterm 2 will be returned Tuesday No Class Wednesday - Use this time to work on homework or check out the final exam archive.

8.1 Arc Length

Goal: Given $y=f(x)$ from $x=a$ to $x=b$.
Want to find the length along the curve.

$$
\text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Derivation:

1. Break into n subdivision:

$$
\Delta x=\frac{b-a}{n}, \quad x_{i}=a+i \Delta x
$$

2. Compute $y_{i}=f\left(x_{i}\right)$.
3. Compute the straight line distance from (x_{i}, y_{i}) to (x_{i+1}, y_{i+1}).

$$
\sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}}
$$

$$
\text { Arc Length }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \Delta x
$$

Note that

$$
\begin{gathered}
\lim _{\Delta x \rightarrow 0} \frac{\Delta y_{i}}{\Delta x}=\text { slope of tangent }=f^{\prime}(x) \\
\text { Arc Length }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \Delta x \\
\text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
\end{gathered}
$$

$$
\begin{aligned}
& =\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}\left(1+\frac{\left(\Delta y_{i}\right)^{2}}{(\Delta x)^{2}}\right)} \\
& =\sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \Delta x
\end{aligned}
$$

4. Add these distances up.

Good news:

Arc length is important. And we found an integral to compute arc length, yeah!

Bad news:

The arc length integral almost always is something that can't be done explicitly (we have to approximate, Simpson's rule), boo!

In homework, you see the few, unusual cases where you actually can compute arc length explicitly.

Here are most of the 8.1 HW questions
Find the arc length of

$$
\text { 1. } y=4 x-5 \text { for }-3 \leq x \leq 2
$$

$$
\begin{aligned}
& \text { 2. } y=\sqrt{2-x^{2}} \text { for } 0 \leq x \leq 1 \\
& \text { 3. } y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}} \text { for } 1 \leq x \leq 2
\end{aligned}
$$

$$
\text { 4. } y=\frac{1}{3} \sqrt{x}(x-3) \text { for } 4 \leq x \leq 16
$$

$$
\text { 5. } y=\ln (\cos (x)) \text { for } 0 \leq x \leq \pi / 3
$$

$$
\text { 6. } y=\ln \left(1-x^{2}\right) \text { for } 0 \leq x \leq 1 / 7
$$

Example:

$$
y=4 x-5 \text { for }-3 \leq x \leq 2
$$

Example:

$$
y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}} \text { for } 1 \leq x \leq 2
$$

Example:
 $$
y=\ln (\cos (x)) \text { for } 0 \leq x \leq \pi / 3
$$

Aside (don't need all this for this course)

In applications, Arc Length is used in motion (parametric) problems, which you will see a lot in Math 126:

$$
x=x(t), y=y(t)
$$

Very often, in motion problems we need:

$$
s(t)=\int_{0}^{t} \sqrt{\left(x^{\prime}(u)\right)^{2}+\left(y^{\prime}(u)\right)^{2}} d u
$$

which gives the distance traveled from time 0 to time t. This is called the Arc Length (Distance) Function.

In this case, the same derivation from the beginning of class yields:

$$
\text { Arc Length }=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

This gives the distance the object has traveled on the curve.

Simple Example:
Consider

$$
x=3 t, y=4 t+2
$$

where t is in seconds.
(a) Find the arc length from 0 to 10 sec .
(b) Find the arc length function.
(c) What is the derivative of the arc length function?

